

Test-time Adaptation for Machine Translation Evaluation by Uncertainty Minimization

@ACL 2023

Runzhe Zhan, Xuebo Liu, Derek F. Wong, Cuilian Zhang, Lidia S. Chao, Min Zhang

MT Evaluation

- **Metric:** Automatically quantify the translation quality.
- **Paradigms:** Traditional metrics (e.g., BLEU), Neural metrics (e.g., COMET).

Introduction

Methodology

Analysis

Conclusion

Related Work

- **Representative Metric COMET:** Fine-tune XLM-R pre-trained model with human rating data.
- Publicly available rating data solely come from WMT-News domain.

COMET Architectures.

Rei, R., Stewart, C., Farinha, A. C., & Lavie, A. (2020). COMET: A Neural Framework for MT Evaluation. In Proceedings of the EMNLP 2020 (pp. 2685-2702).

Related Work

- **Representative Metric COMET:** Fine-tune XLM-R pre-trained model with human rating data.
- Publicly available rating data solely come from WMT-News domain.
- Problem: Neural metrics were trained on WMT-News human rating data.

COMET Architectures.

Background

- **Problem:** Neural metrics were trained on WMT-News human rating data.
- Potential Risk: Robustness problem when evaluating out-of-distribution (OOD) samples.

Background

- **Problem:** Neural metrics were trained on WMT-News human rating data.
- Potential Risk: Robustness problem when evaluating out-of-distribution (OOD) samples.
- Results: Neural metrics sometimes underperform traditional metrics.

System-level Pearson correlations (%) of metrics with human scores on WMT21 Metrics Shared Task - MQM.

Dilemma

- **Direct Solution:** Collect human scores for out-of-distribution (OOD) samples.
 - **X** Cost: Expensive to collect annotated data!

Dilemma

- **Direct Solution:** Collect human scores for out-of-distribution (OOD) samples.
 - **X** Cost: Expensive to collect annotated data!
- Challenge: Can we alleviate OOD problem without collecting annotated data?
 - **OOD vs. In-domain:** Performance degradation means more prediction errors.

Dilemma

- **Direct Solution:** Collect human scores for out-of-distribution (OOD) samples.
 - **X** Cost: Expensive to collect annotated data!
- Challenge: Can we alleviate OOD problem without collecting annotated data?
 - OOD vs. In-domain: Performance degradation means more prediction errors.

What factors are related to the prediction errors from model perspective?

Dilemma

- **Direct Solution:** Collect human scores for out-of-distribution (OOD) samples.
 - **X** Cost: Expensive to collect annotated data!
- Challenge: Can we alleviate OOD problem without collecting annotated data?
 - OOD vs. In-domain: Performance degradation means more prediction errors.
 - What factors are related to the prediction errors from model perspective?

Minimize [?] Minimize (model's) prediction error

Observation

Observation

What factors are related to the prediction errors <u>from model perspective</u>?

Observation

What factors are related to the prediction errors <u>from model perspective</u>?

- Model uncertainty reflects the risk of model's prediction.
- Observation: Model uncertainty positively aligns with its prediction errors.
 - Also observed by Glushkova et al. (2021).

Introduction

Methodology

Experiment

Analysis

Conclusion

✓ Make the model correct the predictions by itself

7

Introduction

Methodology

Experiment

Analysis

Conclusion

Methodology

Experiment

Proposal: TaU

Wey Research Questions:

- 1) How can we estimate the uncertainty for metrics' model?
- 2) How can we reduce the uncertainty by test-time adaptation ?

Proposal: TaU

Key Research Questions:

- 1) How can we estimate the uncertainty for metrics' model?
- 2) How can we reduce the uncertainty by test-time adaptation ?

Illustration of the proposed method: Test-time Adaption by Uncertainty estimation (TaU)

Proposal: TaU

Key Research Questions:

- 1) How can we estimate the uncertainty for metrics' model?
- 2) How can we reduce the uncertainty by test-time adaptation ?

Illustration of the proposed method: Test-time Adaption by Uncertainty estimation (TaU)

Proposal: TaU

Key Research Questions:

- 1) How can we estimate the uncertainty for metrics' model?
- 2) How can we reduce the uncertainty by test-time adaptation ?

Illustration of the proposed method: Test-time Adaption by Uncertainty estimation (TaU)

Proposal: TaU

- Uncertainty Estimation
 - Uncertainty = Variance of scoring distribution
 - Regression model only provides a single score

Frozen Modules

9

Proposal: TaU

- Uncertainty Estimation
 - Uncertainty = Variance of scoring distribution
 - Regression model only provides a single score
- Monte Carlo sampling method:
 - Randomly active some dropout layers and perform
 - K-times forward-propagation.

Proposal: TaU

- Uncertainty Estimation
 - Uncertainty = Variance of scoring distribution
 - Regression model only provides a single score
- Monte Carlo sampling method:
 - Randomly active some dropout layers and perform
 - K-times forward-propagation.
 - Uncertainty = Variance of K-times prediction

$$u(\langle h, s, \cdot \rangle) = \mathbf{Var}(\{\mathbf{M}(\langle h, s, \cdot \rangle; \theta_k)\}_{k=1}^K)$$

Metric Model (w/ Dropout)

Proposal: TaU

- Test-time adaptation
 - Online optimization
 - Objective function: minimize the uncertainty

$$\theta^* = \arg\min_{\theta^*} \mathbb{E}_{\langle h, s, \cdot \rangle \in \mathcal{D}} \left[u(\langle h, s, \cdot \rangle) \right]$$

Optimization of partial modules

Proposal: TaU

Test-time adaptation

- Online optimization
- Objective function: minimize the uncertainty

$$\theta^* = \arg\min_{\theta^*} \mathbb{E}_{\langle h, s, \cdot \rangle \in \mathcal{D}} \left[u(\langle h, s, \cdot \rangle) \right]$$

Optimization of partial modules

- Choice of Optimization Parameters
 - Do not deviate far from original parameters.
 - Only optimize partial parameters.

Proposal: TaU

Choice of Optimization Parameters

q

Proposal: TaU

Choice of Optimization Parameters

Domain	LAtt.	LN.	Estim.	ρ	Acc.
	1	X	X	85.7	89.7
	×	\checkmark	×	79.5	76.9
News	×	X	\checkmark	78.7	80.8
	\checkmark	\checkmark	×	79.6	76.9
	\checkmark	X	\checkmark	78.6	80.8
	\checkmark	\checkmark	\checkmark	78.0	79.4
	✓	X	X	85.9	85.9
	×	\checkmark	×	79.4	82.1
TED	×	X	\checkmark	77.2	76.9
IED	\checkmark	\checkmark	×	79.4	82.1
	\checkmark	X	\checkmark	77.1	76.9
	✓	\checkmark	\checkmark	76.9	76.9

Conclusion

LAtt. = Layerwise Attention | LN. = Layer Normalization

Estim. = Score Estimator

Ablation Results.

Algorithm: TaU

Require: Model θ , System-level evaluation tuple $\mathcal{D} = \{ \langle \mathbf{h}, \mathbf{s}, \cdot \rangle \}$, Adaptation rate α , Adaptation times J.

- 1: Backup original model $\theta' \leftarrow \theta$
- 2: Select parameters for adaptation $|\theta^*| \ll |\theta|$
- 3: for adaptation iteration j = 1, ..., J do
- 4: Score set $\mathbf{q} = \{ \phi \}$
- 5: for mini-batch $\{\langle h, s, \cdot \rangle\}_{i=1}^N \in \mathcal{D}$ do 6: Estimate uncertainty *u* by Equation 3
- 7: Optimize $\theta^* \leftarrow \theta^* \alpha \nabla_{\theta^*} \frac{1}{N} \sum_{i=1}^N u_i$
- 8: **end for**
- 9: Infer score [q] by Equation 7
- 10: $\mathbf{q} \leftarrow [q]$
- 11: **end for**
- 12: Restore to original model $\theta \leftarrow \theta'$
- 13: return \mathbf{q}

- Three steps: Estimate, Adapt, Predict
 - ▶ 1. Estimate the model uncertainty $u(\langle h, s, \cdot \rangle) = Var(\{M(\langle h, s, \cdot \rangle; \theta_k)\}_{k=1}^K)$

$$\operatorname{Var}(P) = \sqrt{\mathbb{E}\left[(P - \mu_P)^2\right]}$$

Algorithm: TaU

Require: Model θ , System-level evaluation tuple $\mathcal{D} = \{ \langle \mathbf{h}, \mathbf{s}, \cdot \rangle \}$, Adaptation rate α , Adaptation times J.

- 1: Backup original model $\theta' \leftarrow \theta$
- 2: Select parameters for adaptation $|\theta^*| \ll |\theta|$
- 3: for adaptation iteration j = 1, .., J do
- 4: Score set $\mathbf{q} = \{ \phi \}$
- 5: for mini-batch $\{\langle h, s, \cdot \rangle\}_{i=1}^N \in \mathcal{D}$ do 6: Estimate uncertainty *u* by Equation 3
- 7: Optimize $\theta^* \leftarrow \theta^* \alpha \nabla_{\theta^*} \frac{1}{N} \sum_{i=1}^N u_i$
- 8: end for
- 9: Infer score [q] by Equation 7
- 10: $\mathbf{q} \Leftarrow [q]$
- 11: **end for**
- 12: Restore to original model $\theta \leftarrow \theta'$
- 13: return q

- Three steps: Estimate, Adapt, Predict
 - → 1. Estimate the model uncertainty $u(\langle h, s, \cdot \rangle) = \mathbf{Var}(\{\mathbf{M}(\langle h, s, \cdot \rangle; \theta_k)\}_{k=1}^K)$

$$\operatorname{Var}(P) = \sqrt{\mathbb{E}\left[(P - \mu_P)^2\right]}$$

2. Adapt by minimizing the uncertainty $\theta^* = \arg \min_{\theta^*} \mathbb{E}_{\langle h, s, \cdot \rangle \in \mathcal{D}} [u(\langle h, s, \cdot \rangle)]$

Algorithm: TaU

Require: Model θ , System-level evaluation tuple $\mathcal{D} = \{ \langle \mathbf{h}, \mathbf{s}, \cdot \rangle \}$, Adaptation rate α , Adaptation times J.

- 1: Backup original model $\theta' \leftarrow \theta$
- 2: Select parameters for adaptation $|\theta^*| \ll |\theta|$
- 3: for adaptation iteration j = 1, .., J do
- 4: Score set $\mathbf{q} = \{ \phi \}$
- 5: for mini-batch $\{\langle h, s, \cdot \rangle\}_{i=1}^N \in \mathcal{D}$ do 6: Estimate uncertainty *u* by Equation 3
- 7: Optimize $\theta^* \leftarrow \theta^* \alpha \nabla_{\theta^*} \frac{1}{N} \sum_{i=1}^N u_i$
- 8: end for
- 9: Infer score [q] by Equation 7

10: $\mathbf{q} \Leftarrow [q]$

11: **end for**

12: Restore to original model
$$\theta \leftarrow \theta'$$

13: **return q**

- Three steps: Estimate, Adapt, Predict
 - → 1. Estimate the model uncertainty $u(\langle h, s, \cdot \rangle) = \mathbf{Var}(\{\mathbf{M}(\langle h, s, \cdot \rangle; \theta_k)\}_{k=1}^K)$

$$\operatorname{Var}(P) = \sqrt{\mathbb{E}\left[(P - \mu_P)^2\right]}$$

- 2. Adapt by minimizing the uncertainty $\theta^* = \arg \min_{\theta^*} \mathbb{E}_{\langle h, s, \cdot \rangle \in \mathcal{D}} [u(\langle h, s, \cdot \rangle)]$
- 3. Predict with the adapted parameters $q = M_{ heta + \Delta heta^*}(\{\langle h, s, \cdot
 angle\})$

Methodology

Experiment

Analysis

Conclusion

Experiments

TaU: Performance

- **Testbed:** COMET models, Developmental data: WMT20
- Improved system-level Pearson's correlation on partial multi-domain evaluation tasks.

Metrics	News w/o HT			News w/ HT			TED			
with the second se	En-De	Zh-En	En-Ru	En-De	Zh-En	En-Ru	En-De	Zh-En	En-Ru	Avg.
Baselines										
TER	93.0	41.6	-4.1	7.4	-8.5	-28.9	50.6	42.1	69.7	29.2
BLEU	93.7	31.0	50.7	13.2	-15.2	-4.3	62.0	32.4	82.8	38.5
CHRF	89.8	30.2	78.3	1.7	-14.3	12.3	47.1	36.3	82.5	40.4
BERTSCORE	93.0	54.2	62.9	7.4	9.5	-12.3	50.6	30.6	83.1	42.1
COMET-DA ₂₀₂₀	81.4	51.1	67.6	65.8	22.1	55.6	78.8	25.1	85.9	59.3
COMET-MQM-QE ₂₀₂₁	71.1	52.9	63.2	79.2	61.9	68.1	69.4	-20.9	88.4	59.3
COMET-MQM ₂₀₂₁	77.1	62.8	65.9	72.0	33.6	68.5	81.8	26.6	84.1	63.6
Reproduced Results and Our Methods										
\diamond COMET-DA ₂₀₂₀	81.5	51.1	67.5	58.0	26.4	56.8	78.8	25.0	85.9	59.0
+TAU	85.7	53.5	71.0	48.0	27.4	54.5	85.9	28.3	87.3	60.2
♦ COMET-MQM-QE ₂₀₂₁	71.2	53.0	68.8	79.2	61.9	68.1	69.4	-20.8	81.7	59.2
+TAU	62.8	57.4	70.3	72.0	65.2	78.1	82.9	25.7	80.7	66.1
♦ COMET-MQM ₂₀₂₁	$\bar{77.2}$	62.8	65.9	69.8	48.7	69.7	81.8	26.6	84.1	65.2
+TAU	76.5	69.2	67.2	75.4	67.8	71.5	87.5	24.5	84.9	69.4

14

System-level Pearson correlations (%) of metrics with human scores on WMT21 Metrics Shared Task - MQM

TaU: Effectiveness

- **Research Goal**: Reduce the uncertainty of OOD samples
- Validity: improve the correlation, also reduce the uncertainty

Uncertainty distribution of COMET baselines and corresponding models optimized by TaU

Conclusions

• OOD samples may hinder the application scope of neural metrics.

Conclusions

- OOD samples may hinder the application scope of neural metrics.
- We confirmed and also observed the uncertainty-error relationship for metric models.
- We propose a test-time adaptation method to reduce inference uncertainty.

Conclusions

- OOD samples may hinder the application scope of neural metrics.
- We confirmed and also observed the uncertainty-error relationship for metric models.
- We propose a test-time adaptation method to reduce inference uncertainty.
- OOD evaluation / adaptation are potential topics for the Large Language Models.

Conclusions

- OOD samples may hinder the application scope of neural metrics.
- We confirmed and also observed the uncertainty-error relationship for metric models.
- We propose a test-time adaptation method to reduce inference uncertainty.
- OOD evaluation / adaptation are potential topics for the Large Language Models.

Limitations

- Segment-level correlation performance is not satisfactory.
- Hyper-parameter searching is still time-consuming.
- Cannot fix the errors related to unseen knowledge.

Conclusions

- OOD samples may hinder the application scope of neural metrics.
- We confirmed and also observed the uncertainty-error relationship for metric models.
- We propose a test-time adaptation method to reduce inference uncertainty.
- OOD evaluation / adaptation are potential topics for the Large Language Models.

Limitations

- Segment-level correlation performance is not satisfactory.
- Hyper-parameter searching is still time-consuming.
- Cannot fix the errors related to unseen knowledge.

Poster

Supplementary

Low-Resource Languages (In-domain)

- Multi-domain benchmark for MT evaluation is scarce.
- Experimental results on previous WMT-News benchmark with the same learning rate (did not tune on developmental data).

	Pl-En	Ru-En	Ta-En	Zh-En	En-Pl	En-Ru	En-Ta	En-Zh
COMET-DA	34.5	83.6	0.764	93.1	80.0	92.5	79.8	0.7
+TaU	34.6	84.0	0.774	93.4	79.0	91.6	75.3	1.2

System-level Pearson correlations (%) of metrics with human scores on WMT20 Metrics Shared Task (News).

Supplementary

Low-Resource Languages (In-domain)

- Multi-domain benchmark for MT evaluation is scarce.
- Experimental results on previous WMT-News benchmark with the same learning rate (did not tune on developmental data).

System-level Pearson correlations (%) of metrics with human scores on WMT20 Metrics Shared Task (News).

Introduction

Methodology

Experiment

Analysis

Conclusion

NDE Maintenantieren Australia de autoriteren A

Supplementary

Multi-turn Adaptation

• The out-of-distribution data requires more adaptation times than in-domain data, and both

of them would suffer from extreme settings.

Performance of TAU with different settings of adaptation times.