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MT Evaluation

• Metric: Automatically quantify the translation quality.


• Paradigms: Traditional metrics (e.g., BLEU), Neural metrics (e.g., COMET). 

 Traditional Metrics: BLEU, chrF, etc.
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 Neural Metrics: COMET, BLEURT, etc.
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Related Work

COMET Architectures.
Rei, R., Stewart, C., Farinha, A. C., & Lavie, A. (2020). COMET: A Neural Framework for MT Evaluation. In Proceedings of the EMNLP 2020 (pp. 2685-2702).

• Representative Metric - COMET:  Fine-tune XLM-R pre-trained model with human rating data.

• Publicly available rating data solely come from WMT-News domain.
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Background

• Problem: Neural metrics were trained on WMT-News human rating data. 

• Potential Risk: Robustness problem when evaluating out-of-distribution (OOD) samples. 

• Results: Neural metrics sometimes underperform traditional metrics.

BLEU TER ChRF COMET-DA COMET-QE COMET-MQM

Chinese-English  
(TED Domain)

32.4 42.1 36.3 25.1 -20.9 26.6

System-level Pearson correlations (%) of metrics with human scores on WMT21 Metrics Shared Task - MQM.

Traditional metrics Neural metrics
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• Direct Solution: Collect human scores for out-of-distribution (OOD) samples.

✘ Cost: Expensive to collect annotated data!

Dilemma
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• Direct Solution: Collect human scores for out-of-distribution (OOD) samples.

✘ Cost: Expensive to collect annotated data!

• Challenge: Can we alleviate OOD problem without collecting annotated data?

• OOD vs. In-domain:  Performance degradation means more prediction errors.

🤔  What factors are related to the prediction errors from model perspective?

Dilemma

Prediction Error

💡  Minimize [?] ➜ Minimize (model’s) prediction error
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• Model uncertainty reflects the risk of model’s prediction.

• Observation: Model uncertainty positively aligns with its prediction errors. 

◦ Also observed by Glushkova et al. (2021). 

🤔  What factors are related to the prediction errors from model perspective?
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MQM: Human Ratings

Prediction Error: Difference between 
metric score and human score.

COMET: A Neural Metric☜

Observation

Glushkova, T., Zerva, C., Rei, R., & Martins, A. F. (2021). Uncertainty-Aware Machine Translation Evaluation. In Findings of the EMNLP 2021 (pp. 3920-3938).
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Motivation

Model Uncertainty Prediction Error

🤔  Key Idea: Minimize (model’s) uncertainty ➜ Minimize (model’s) prediction error

Experim
ent
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Model Uncertainty Prediction Error

🤔  Key Idea: Minimize (model’s) uncertainty ➜ Minimize (model’s) prediction error

✓ Can be estimated during test time 


✓ Can be estimated without additional data 

✓ Make the model correct the predictions by itself 

Experim
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Motivation

Model Uncertainty Prediction Error

🤔  Key Idea: Minimize (model’s) uncertainty ➜ Minimize (model’s) prediction error

✓ Can be estimated during test time 


✓ Can be estimated without additional data 

✓ Make the model correct the predictions by itself 

Test-time Adaptation by


Uncertainty Minimization


(TaU)

Experim
ent
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Proposal: TaU

🤔  Key Research Questions:

1) How can we estimate the uncertainty for metrics’ model ?


2) How can we reduce the uncertainty by test-time adaptation ?
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2) How can we reduce the uncertainty by test-time adaptation ?

Illustration of the proposed method: Test-time Adaption by Uncertainty estimation (TaU) 
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ent
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🤔  Key Research Questions:

1) How can we estimate the uncertainty for metrics’ model ?


2) How can we reduce the uncertainty by test-time adaptation ?

Illustration of the proposed method: Test-time Adaption by Uncertainty estimation (TaU) 

Experim
ent

Uncertainty Estimation  
(RQ.1) 

Test-time Adaptation  
(RQ.2) 
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• Monte Carlo sampling method: 

• Randomly active some dropout layers and perform 

K-times forward-propagation.
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Input Data Metric Model (w/ Dropout)

• Uncertainty Estimation

• Uncertainty = Variance of scoring distribution

• Regression model only provides a single score

• Monte Carlo sampling method: 

• Randomly active some dropout layers and perform 

K-times forward-propagation.

• Uncertainty = Variance of K-times prediction
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• Test-time adaptation 

◦ Online optimization 


◦ Objective function: minimize the uncertainty

Optimization of partial modules 

• Choice of Optimization Parameters

• Do not deviate far from original parameters.

• Only optimize partial parameters.
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Output of each layer
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• Choice of Optimization Parameters

Ablation Results.  
LAtt. = Layerwise Attention | LN. = Layer Normalization 

Estim. = Score Estimator
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1. Estimate the model uncertainty
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Algorithm: TaU
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ent

• Three steps: Estimate, Adapt, Predict

1. Estimate the model uncertainty

2. Adapt by minimizing the uncertainty

3. Predict with the adapted parameters
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System-level Pearson correlations (%) of metrics with human scores on WMT21 Metrics Shared Task - MQM

• Testbed: COMET models, Developmental data: WMT20


• Improved system-level Pearson’s correlation on partial multi-domain evaluation tasks.
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• Research Goal: Reduce the uncertainty of OOD samples


• Validity: improve the correlation, also reduce the uncertainty

Uncertainty distribution of COMET baselines and corresponding models optimized by TaU 
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• OOD samples may hinder the application scope of neural metrics.

• We confirmed and also observed the uncertainty-error relationship for metric models.  

• We propose a test-time adaptation method to reduce inference uncertainty.

• OOD evaluation / adaptation are potential topics for the Large Language Models.

• Segment-level correlation performance is not satisfactory.

• Hyper-parameter searching is still time-consuming.

• Cannot fix the errors related to unseen knowledge.
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Thank you for listening!

• OOD samples may hinder the application scope of neural metrics.

• We confirmed and also observed the uncertainty-error relationship for metric models.  

• We propose a test-time adaptation method to reduce inference uncertainty.

• OOD evaluation / adaptation are potential topics for the Large Language Models.

• Segment-level correlation performance is not satisfactory.

• Hyper-parameter searching is still time-consuming.

• Cannot fix the errors related to unseen knowledge.

Poster 
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• Multi-domain benchmark for MT evaluation is scarce.


• Experimental results on previous WMT-News benchmark with the same learning rate (did 

not tune on developmental data).

Pl-En Ru-En Ta-En Zh-En En-Pl En-Ru En-Ta En-Zh

COMET-DA 34.5 83.6 0.764 93.1 80.0 92.5 79.8 0.7

+TaU 34.6 84.0 0.774 93.4 79.0 91.6 75.3 1.2

System-level Pearson correlations (%) of metrics with human scores on WMT20 Metrics Shared Task (News).
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• Multi-domain benchmark for MT evaluation is scarce.


• Experimental results on previous WMT-News benchmark with the same learning rate (did 

not tune on developmental data).

Pl-En Ru-En Ta-En Zh-En En-Pl En-Ru En-Ta En-Zh

COMET-DA 34.5 83.6 0.764 93.1 80.0 92.5 79.8 0.7

+TaU 34.6 84.0 0.774 93.4 79.0 91.6 75.3 1.2

into English from English

System-level Pearson correlations (%) of metrics with human scores on WMT20 Metrics Shared Task (News).
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• The out-of-distribution data requires more adaptation times than in-domain data, and both 

of them would suffer from extreme settings.

Performance of TAU with different settings of adaptation times. 


