Test-time Adaptation for Machine Translation Evaluation by Uncertainty Minimization

Runzhe Zhan¹, Xuebo Liu², Derek F. Wong¹, Cuilian Zhang¹,

Lidia S. Chao¹ and Min Zhang²

¹NLP²CT Lab, Department of Computer and Information Science, University of Macau ²Institute of Computing and Intelligence, Harbin Institute of Technology (Shenzhen)

TED

Out-of-distribution Challenges

- **Problem:** Neural metrics were trained on News rating data.
- **Potential Risk:** Neural metrics may have robustness problems when evaluating the out-of-distribution (OOD) text.
- **X** Dilemma: Collecting multi-domain annotation data is expensive.

TaU

- Uncertainty Estimation:
 - Use Monte-Carlo Dropout (Gal et. al, 2016; Glushkova et. al, 2021) method to estimate the uncertainty during inference.
 - Uncertainty = Variance of K-times prediction

A Diemina. Conecting multi-domain annotation data is expensive.
A Main Research Goal:

Can we alleviate OOD problem without annotated data?

Why Uncertainty Minimization? -

- **Epistemic uncertainty** reflects the risk of model's predictions.
- **Observation:** Model's uncertainty positively correlates with its prediction errors. Also observed by Glushkova et al. (2021).

- **COMET:** A neural metric.
- MQM: Human scores.
- Prediction Error: Absolute Differences between metric scores and human scores.

$$u(\langle h, s, \cdot
angle) = \mathbf{Var}(\{\mathrm{M}(\langle h, s, \cdot
angle; heta_k)\}_{k=1}^K)$$

Input Data
Metric Model (w/ Dropout

- Test-time Adaptation:
 - Objective function: minimize the uncertainty
 - Do not deviate far from original parameters! Only optimize partial parameters (Layerwise Attention + Scaling Factor).

$$\begin{array}{l} \theta^* = \arg\min_{\substack{\theta^* \\ \uparrow}} \mathbb{E}_{\langle h, s, \cdot \rangle \in \mathcal{D}} \left[u(\langle h, s, \cdot \rangle) \right] \\ \uparrow \\ \text{Optimization of partial modules} \end{array}$$

How Does TaU Work?

• Improved system-level Pearson's correlation performance on WMT21 MQM multi-domain benchmark.

Metrics	News w/o HT	News w/ HT	

COMET Uncertainty

✓ Motivation:

Minimize the uncertainty Minimize the prediction errors

Our Proposal: TaU

- **T**est-time **A**daptation by **U**ncertainty Minimization (TaU).
- ✓ Key Idea: Make the model correct the predictions by itself through reducing the uncertainty.

✓ Key Research Questions:

- 1) How can we **estimate** the uncertainty for metrics' model?
- 2) How can we reduce the uncertainty by test-time adaptation?

	En-De	Zh-En	En-Ru	En-De	Zh-En	En-Ru	En-De	Zh-En	En-Ru	Avg.
			Ba	selines						
TER	93.0	41.6	-4.1	7.4	-8.5	-28.9	50.6	42.1	69.7	29.2
BLEU	93.7	31.0	50.7	13.2	-15.2	-4.3	62.0	32.4	82.8	38.5
CHRF	89.8	30.2	78.3	1.7	-14.3	12.3	47.1	36.3	82.5	40.4
BERTSCORE	93.0	54.2	62.9	7.4	9.5	-12.3	50.6	30.6	83.1	42.1
COMET-DA ₂₀₂₀	81.4	51.1	67.6	65.8	22.1	55.6	78.8	25.1	85.9	59.3
COMET-MQM-QE ₂₀₂₁	71.1	52.9	63.2	79.2	61.9	68.1	69.4	-20.9	88.4	59.3
COMET-MQM ₂₀₂₁	77.1	62.8	65.9	72.0	33.6	68.5	81.8	26.6	84.1	63.6
		Reprod	uced Resi	ults and C	Our Metho	ods				
\diamond COMET-DA ₂₀₂₀	81.5	51.1	67.5	58.0	26.4	56.8	78.8	25.0	85.9	59.0
+TAU	85.7	53.5	71.0	48.0	27.4	54.5	85.9	28.3	87.3	60.2
\diamond COMET-MQM-QE ₂₀₂₁	71.2	53.0	68.8	79.2	61.9	68.1	69.4	-20.8	81.7	59.2
+TAU	62.8	57.4	70.3	72.0	65.2	78.1	82.9	25.7	80.7	66.1
♦ COMET-MQM ₂₀₂₁	$\bar{77.2}$	$\overline{62.8}$	65.9	69.8	48.7	69.7	81.8	26.6	84.1	$\overline{65.2}$
+TAU	76.5	69.2	67.2	75.4	67.8	71.5	87.5	24.5	84.9	69.4

Why Does TaU Work?

• Validity: Reduced the uncertainty of OOD samples.

Acknowledgement

This work was supported in part by the Science and Technology Development Fund, Macau SAR (Grant Nos. FDCT/060/2022/AFJ, FDCT/0070/2022/AMJ), the National Natural Science Foundation of China (Grant No. 62206076), the Research Program of Guangdong Province (Grant No. 2220004002576), Shenzhen College Stability Support Plan (Grant Nos. GXWD20220811173340003, GXWD20220817123150002), Shenzhen Science and Technology Program (Grant No. RCBS20221008093121053) and the Multi-year Research Grant from the University of Macau (Grant No. MYRG2020-00054-FST). This work was performed in part at SICC which is supported by SKL-IOTSC, and HPCC supported by ICTO of the University of Macau. We would like to thank the anonymous reviewers and meta-reviewer for their insightful suggestions.

* The 61st Annual Meeting of the Association for Computational Linguistics (ACL), 2023.